

PROGRAMA EDUCATIVO

CLAVE: E-DECE-3

LICENCIATURA EN INGENIERÍA EN BIOTECNOLOGÍA

EN COMPETENCIAS PROFESIONALES

PROGRAMA DE ASIGNATURA: DISEÑO DE EXPERIMENTOS Y CONTROL ESTADÍSTICO

Propósito de apr Asignatura	endizaje de la	El alumno establecerá a través de herramientas estadísticas, cartas de control y modelos de control avanzados, la validez y veracidad de las variables de un bioproceso, para dar cumplimiento a los estándares de calidad nacionales e internacionales.				
Competencia a la contribuye la asi	g que	Integrar el conocimiento para el desarrollo, la optimización e innovación de bioprocesos a través de la gestión y el manejo sostenible de los recursos para contribuir a la consolidación de la competitividad que permita generar bienes y servicios biotecnológicos con impacto regional, nacional e internacional				
Tipo de competencia	Cuatrimestre	Créditos	Modalidad	Horas por semana	Horas Totales	
ESPECÍFICA	7	4.68	ESCOLARIZADA	5	75	

	Horas del Saber	Horas del Saber Hacer	Horas Totales
Unidades de Aprendizaje			
I. Estadística aplicada al diseño de experimentos.	5	10	15
II. Diseños factoriales	10	15	25
III. Capacidad de proceso	5	10	15
IV. Gráficos de control por variables y por atributos	8	12	20
Totales	28	47	75

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42 1	
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-42.1	

Funciones	Capacidades	Criterios de Desempeño
Optimizar la eficiencia de los	Examinar el bioproceso mediante	Genera evidencias que demuestran el análisis de la factibilidad
bioprocesos mediante la	la determinación de los	para la innovación del bioproceso.
integración del conocimiento para	parámetros de operación y	
generar bienes y servicios	rendimientos para mejorar los	
biotecnológicos.	bienes y servicios biotecnológicos	
	generados.	
	Establecer los parámetros de	Genera evidencias que demuestran la implementación del
	operación y rendimientos del	proyecto, recolección y evaluación de datos, así como un
	bioproceso mediante el análisis de	análisis para evaluar el impacto de la innovación.
	datos para mejorar los bienes y	
	servicios biotecnológicos	
	generados.	
Implementar los bioprocesos	Definir los recursos mediante el	Genera evidencias que demuestran el análisis en la elección de
optimizados a través de la	análisis de datos para innovar los	biorreactores, operaciones unitarias involucradas en los
integración del conocimiento para	bioprocesos.	procesos de bioseparación y los servicios auxiliares requeridos.
la innovación de bienes y servicios		
biotecnológicos.		

UNIDADES DE APRENDIZAJE

Unidad de Aprendizaje	I. Estadística aplicada al diseño de experimentos.					
Propósito esperado		El alumno establecerá a través de herramientas estadísticas, la validez y veracidad e influencia de las variables de un bioproceso, para dar cumplimiento a los estándares de calidad nacionales e internacionales.				
Tiempo Asignado	Horas del Saber	5	Horas del Saber Hacer	10	Horas Totales	15

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-I IC-42 1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Principios para el diseño de experimentos, prueba de hipótesis e intervalos de confianza	Definir el control estadístico del bioproceso e identificar las herramientas estadísticas en el análisis de datos y diseño de experimentos. Explicar los experimentos estadísticos comparativos que participan en el diseño de experimentos y el fundamento de la prueba de hipótesis y los intervalos de confianza.	Seleccionar las herramientas estadísticas aplicables a procesos, definiendo factores, noveles de factor, variables de respuesta y necesidades de análisis. Determinar diferencias significativas entre tratamientos, a través del establecimiento de pruebas de hipótesis y la determinación de intervalos de confianza	El alumno promoverá la responsabilidad y honestidad a través del desarrollo de actividades en forma individual o en equipo de forma proactiva. El alumno desarrollará el pensamiento analítico al definir los diferentes conceptos y
Regresión lineal y no lineal	Identificar métodos de regresión estadística aplicados en bioprocesos.	Plantear modelos de regresión lineal o no lineal (según sea el caso), que faciliten el análisis del proceso, estableciendo las variables involucradas en el monitoreo o que tienen influencia en variables de respuesta.	resolución de problemas. El alumno asumirá una actitud metódica al realizar determinaciones en el
ANOVA de una, dos vías y pruebas de bondad de ajuste ANOVA de una, dos vías y pruebas de bondad de ajuste	vías, incluyendo las pruebas de bondad	Organizar los datos obtenidos de un monitoreo en formatos estadísticos y determinar si presentan un comportamiento normal y homogeneidad de varianzas. Realizar un análisis de datos experimentales considerando las herramientas de diseño experimental como regresión lineal, ANOVA de una y dos vías.	laboratorio. El alumno desarrollará proyectos aplicando en forma responsable la normatividad vigente. El alumno resolverá problemas de forma ordenada y sistemática.
Prueba Fisher y Tukey	Explicar el fundamento y aplicaciones de los métodos de comparaciones de muestras como la prueba de Fisher y Tukey.	Realizar un análisis de datos experimentales considerando las pruebas de Fisher y Tukey.	El alumno ejercerá liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado de la práctica o proceso a desarrollar.

Proceso Enseñanza-Aprendizaje					
NA	Non-dianous about a la distribution	Espacio Formativo			
Métodos y técnicas de enseñanza	Medios y materiales didácticos	Aula	Х		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

- Equipos colaborativos.	- Pintarrón.	Laboratorio / Taller	
Tareas de investigación.Estudio da caso.	- Equipo multimedia. - Internet.	Empresa	
	- Computadora.		
	- Software estadístico		

Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
Los estudiantes identifican las variables (factores) que	A partir de un caso práctico elaborar un informe			
tienen influencia en el resultado de un bioproceso.	que contenga:			
	-Justificación del sistema o bioproceso a			
Los estudiantes plantean pruebas de hipótesis e	analizar.			
intervalos de confianza para la toma de decisiones	-Selección de variables (un factor y al menos dos	Rúbrica o lista de cotejo		
sobre afirmaciones basadas en el análisis de datos.	variables de respuesta) y justificación del factor	Nubi ica o lista de cotejo		
	y variables de respuesta a analizar.			
Los estudiantes establecen modelos que describen	- Estimación de intervalos de confianza y prueba			
relaciones entre variables en un bioproceso y	de hipótesis.			
determinan si la correlación es lineal o no lineal.	- Conclusiones			
	A partir de un caso práctico elaborar un informe			
Los estudiantes estiman parámetros poblacionales con	que contenga:			
un nivel de confianza específico y organizan los datos	-Justificación del sistema o bioproceso a			
obtenidos del monitoreo de un experimento o	monitorear.			
proceso.	-Selección de variables de monitoreo.			
	-Concentrado de datos.			
Los estudiantes analizan datos experimentales	-Selección de variables (uno o dos factores y al	Rúbrica o lista de cotejo		
aplicando herramientas como regresión lineal, ANOVA	menos dos variables de respuesta) y justificación			
de una y dos vías, y pruebas de Fisher y Tukey.	de la elección de los factores y variables de			
	respuesta a analizar.			
	-Análisis de los resultados obtenidos a través de			
	ANOVA, pruebas de Fisher y Tukey.			
	-Conclusiones.			

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

Unidad de Aprendizaje	II. Diseños factoriales					
Propósito esperado	Evaluar múltiples factores a la vez, para encontrar interacciones entre variables y determinar los efectos más significativos en el análisis de experimentos y procesos, con el objeto de optimizar procesos y disminuir el efecto de factores indeseables.					
Tiempo Asignado	Horas del Saber	10	Horas del Saber Hacer	15	Horas Totales	25

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
azar y diseño de bloques (bloques aleatorios, cuadrados latinos, cuadrados grecolatinos) Diseño factorial general	Identificar el Análisis de bloques aleatorizados, cuadros latinos y diseños relacionados a un experimento o proceso de un factor y más de un nivel de factor. Explicar los diversos diseños factoriales aplicados a bioprocesos, para varios factores y niveles	Determinar la influencia de factores no considerados en diseños experimentales a través de análisis de bloques aleatorizados, cuadros latinos y diseños relacionados. Determinar las variables que tienen mayor influencia sobre la respuesta o el resultado del experimento a través de la aplicación de análisis factorial con múltiples factores y al menos dos niveles.	Promover la responsabilidad y honestidad a través del desarrollo de actividades en forma individual o en equipo de forma proactiva. Desarrollar el pensamiento analítico al definir los diferentes conceptos y resolución de problemas. Asumir una actitud metódica al realizar determinaciones en el
Diseño factorial 2 ^k	Explicar los fundamentos teóricos de los diseños factoriales 2 ^K y factorial general.		laboratorio. Desarrollar proyectos aplicando en forma responsable la normatividad vigente. Resolver problemas de forma ordenada y sistemática.

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

	Ejercer liderazgo en la práctica
	de laboratorio, coordinando las
	actividades para el buen
	resultado de la práctica o
	proceso a desarrollar.

Proceso Enseñanza-Aprendizaje					
Métados y técnicos do ancasanza	Métodos y técnicas de enseñanza Medios y materiales didácticos Espacio Formativo				
Metodos y techicas de enseñanza	iviedios y materiales didacticos	Aula	Χ		
- Equipos colaborativos.	- Computadora.	Laboratorio / Taller	Х		
- Tareas de investigación.	- Pintarrón.	Empresa			
- Estudio da caso.	- Equipo multimedia.	Empresa			
	- Internet.				
	- Software estadístico				

	Proceso de Evaluación	
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación
Los estudiantes determinan la influencia de factores	A partir de un caso práctico elaborar un	
no considerados en diseños experimentales a través	informe que contenga:	
de análisis de bloques aleatorizados, cuadros latinos y	- Justificación del sistema o bioproceso a	
diseños relacionados.	monitorear.	
	- Selección de variables de monitoreo.	
Los estudiantes plantean diseños experimentales que	- Concentrado de datos	
consideran los factores con potencial influencia en	- Propuesta de diseño experimental con la	
variables de respuesta en bioprocesos	justificación de los factores a analizar (dos o	Rúbrica o lista de cotejo
	más), niveles del factor (al menos 2niveles)	
Los estudiantes determinan la correlación y los efectos	y variables de respuesta (Al menos dos)	
principales de las variables que tienen mayor	- Análisis de los resultados obtenidos a	
influencia sobre la respuesta o el resultado del	través de análisis factorial 2K o análisis	
experimento a través de la aplicación de análisis	factorial general (para el caso de más de	
factorial de múltiples factores.	dos niveles).	
	- Conclusiones.	

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-42.1

Unidad de Aprendizaje	III. Capacidad de proceso					
Propósito esperado	El alumno establecerá el índice de capacidad de un bioproceso, para determinar la continuidad o ajuste de un bioproceso.					
Tiempo Asignado	Horas del Saber	5	Horas del Saber Hacer	10	Horas Totales	15

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Análisis de las Métricas 6 sigma	Explicar las métricas seis sigma y relacionar el índice Cp, Cpm y Cpk con las métricas seis sigma	Aplicar la metodología seis sigma en un caso práctico.	Promover la responsabilidad y honestidad a través del desarrollo de actividades en forma individual
Determinación de los índices de capacidad de corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y Cpm de un bioproceso	Identificar los Índices de capacidad de corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y capacidad general Cpm en un bioproceso.	Determinar los Índices de capacidad de corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y capacidad general Cpm en un bioproceso.	o en equipo de forma proactiva. Desarrollar el pensamiento analítico al definir los diferentes conceptos y resolución de problemas.
•	Identificar los conceptos de cp y cpk para una sola especificación.	Determinar los intervalos de control de un bioproceso.	Asumir una actitud metódica al realizar determinaciones en el laboratorio.
			Desarrollar proyectos aplicando en forma responsable la
	Identificar los intervalos de control de un bioproceso.	Realizar el ajuste de un modelo de control de un bioproceso.	Resolver problemas de forma ordenada y sistemática.
			Ejercer liderazgo en la práctica de laboratorio, coordinando las actividades para el buen resultado

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1	
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-42.1	

	de la práctica o proceso a
	desarrollar.

Proceso Enseñanza-Aprendizaje			
Métodos y técnicas de enseñanza Medios y materiales didácticos Espacio Formativo			
Metodos y tecnicas de enseñanza	iviedios y materiales didacticos	Aula	
- Equipos colaborativos.	- Computadora.	Laboratorio / Taller	Х
Tareas de investigación.Estudio da caso.	- Pintarrón.- Equipo multimedia.	Empresa	
	- Internet.		
	- Software estadístico		

a) Los estudiantes aplican las métricas seis sigma y estimarán intervalos de confianza para determinar la continuidad o ajuste de un bioproceso. A partir de un caso práctico, elaborar un análisis que contenga: -El análisis de las variables de control y el	Proceso de Evaluación				
estimarán intervalos de confianza para determinar la continuidad o ajuste de un bioproceso. que contenga: -El análisis de las variables de control y el	Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación		
corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y capacidad general Cpm según sea el caso en un bioproceso. - El diseño de los gráficos de control e Histogramas aplicables a un bioproceso.	 a) Los estudiantes aplican las métricas seis sigma y estimarán intervalos de confianza para determinar la continuidad o ajuste de un bioproceso. b) Los estudiantes calculan los Índices de capacidad de corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y capacidad general Cpm según sea el caso en un bioproceso. c) Los estudiantes establecen los intervalos de control de un bioproceso. d) Los estudiantes plantean ajustes en modelos de 	A partir de un caso práctico, elaborar un análisis que contenga: -El análisis de las variables de control y el problema detectado en el estadístico temporal o atemporal de un bioproceso El diseño de los gráficos de control e Histogramas aplicables a un bioprocesoCálculo de los Índices de capacidad de corto plazo (Cp, Cpi, Cps y Cpk), largo plazo (Pp, Ppk, Ppi y Pps) y capacidad general Cpm según sea el caso de estudioAnálisis de las Métricas 6 sigma y estimación de intervalos de confianza para determinar la continuidad o ajuste de un bioprocesoAnálisis de resultados.	Rúbrica para estudio de caso		

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

Unidad de Aprendizaje	IV. Gráficos de control por variables y por atributos					
Propósito esperado	El alumno determinará las conformidades, no conformidades y desviaciones utilizando cartas de control, para proponer alternativas de ajuste a un bioproceso fuera de control.					
Tiempo Asignado	Horas del Saber	8	Horas del Saber Hacer	12	Horas Totales	20

Temas	Saber Dimensión Conceptual	Saber Hacer Dimensión Actuacional	Ser y Convivir Dimensión Socioafectiva
Gráficos de control por variables y por atributos aplicables a un bioproceso.	3	Predecir los patrones de inestabilidad en un bioproceso. Elaborar gráficas de control que muestre los patrones de inestabilidad, así como la capacidad del proceso.	Promover la responsabilidad y honestidad a través del desarrollo de actividades en forma individual o en equipo de forma proactiva. Desarrollar el pensamiento analítico al definir los diferentes conceptos y resolución de problemas. Asumir una actitud metódica al realizar determinaciones en el laboratorio. Desarrollar proyectos aplicando en forma responsable la normatividad
Modelos y Cartas CUSUM, EWMA.	Describir las cartas CUSUM y EWMA, incluyendo sus elementos constitutivos y su fundamento teórico	Determinar las causas de variación dentro de un proceso utilizando cartas CUSUM, EWMA.	vigente. Resolver problemas de forma
El modelo ARIMA.	Explicar las causas de variación dentro de un proceso utilizando modelos ARIMA y relacionar los modelos matemáticos avanzados con las cartas ARIMA.	Determinar las causas de variación dentro de un proceso utilizando el modelo de ARIMA.	ordenada y sistemática. Ejercer liderazgo en la práctica de laboratorio, coordinando las

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-PA-LIC-42.1

	actividades para el buen
	resultado de la práctica o
	proceso a desarrollar.

Proceso Enseñanza-Aprendizaje				
Métodos y técnicas de enseñanza Medios y materiales didácticos Espacio Formativo				
ivietodos y tecnicas de enseñanza	iviedios y materiales didacticos	Aula		
- Equipos colaborativos.	- Computadora.	Laboratorio / Taller	Х	
- Tareas de investigación.	- Pintarrón.	Empresa		
- Estudio da caso.	- Equipo multimedia.	2		
	- Internet.			
	- Software estadístico			

	Proceso de Evaluación				
Resultado de Aprendizaje	Evidencia de Aprendizaje	Instrumentos de evaluación			
Los estudiantes determinan patrones de inestabilidad	A partir de un caso práctico, elaborar un análisis				
en un bioproceso.	que contenga:				
	-El análisis de las variables de control y el				
Los estudiantes elaboran gráficas de control que	problema detectado en el estadístico temporal o				
muestren los patrones de inestabilidad, así como la	atemporal de un bioproceso.				
capacidad del proceso.	- El diseño de los gráficos de control e				
	Histogramas aplicables a un bioproceso.	Rúbrica o lista de cotejo			
Los estudiantes determinan las causas de variación	- Gráficos de control por variables y por atributos.				
dentro de un proceso utilizando cartas CUSUM,	- Cartas CUSUM, EWMA.				
EWMA o modelos de ARIMA.	- Un modelo ARIMA.				
	- Análisis de resultados.				
	- Conclusiones				

	Perfil idóneo del docente	
Formación académica	Formación Pedagógica	Experiencia Profesional

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	F-DA-01-FA-LIC-42.1

Profesionista en el área de biotecnología,	Al menos dos años de experiencia en la	Preferentemente con un año de experiencia
bioquímica, Química, Ingeniería Química o	enseñanza de la estadística, el diseño de	en la aplicación de diseño de experimentos o
afín	experimentos o el control estadístico de	control estadístico de procesos, ya sea en la
	proceso	industria o en institutos de investigación

Referencias bibliográficas					
Autor	Año	Título del documento	Lugar de publicación	Editorial	ISBN
Humberto Gutiérrez Pulido	2013	Control estadístico de procesos y seis sigma	México	Mc Graw Hill	978- 6071514592
Douglas C. Montgomery.	2017	Diseño y Análisis de Experimentos	Estados Unidos.	Willey	978- 1119472254
Jorge Domínguez, Eduardo Castaño.	2017	DISEÑO DE EXPERIMENTOS. ESTRATEGIAS Y ANÁLISIS EN CIENCIAS E INGENIERÍAS	México	Marcombo	8426725945

Referencias digitales						
Autor	Fecha de recuperación	Título del documento	Vínculo			
Julián Alberto Uribe Gómez.	2021	Fundamentos de control estadístico de procesos para gestores y administradores tecnológicos				

ELABORÓ:	DGUTYP	REVISÓ:	DGUTYP	F-DA-01-PA-LIC-42.1
APROBÓ:	DGUTYP	VIGENTE A PARTIR DE:	SEPTIEMBRE DE 2024	